Abstract

In this article, we investigate the quantile regression analysis for semi-competing risks data in which a non-terminal event may be dependently censored by a terminal event. Due to the dependent censoring, the estimation of quantile regression coefficients on the non-terminal event becomes difficult. In order to handle this problem, we assume Archimedean Copula to specify the dependence of the non-terminal event and the terminal event. Portnoy [Censored regression quantiles. J Amer Statist Assoc. 2003;98:1001–1012] considered the quantile regression model under right-censoring data. We extend his approach to construct a weight function, and then impose the weight function to estimate the quantile regression parameter for the non-terminal event under semi-competing risks data. We also prove the consistency and asymptotic properties for the proposed estimator. According to the simulation studies, the performance of our proposed method is good. We also apply our suggested approach to analyse a real data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.