Abstract
The uncertainties of transpiration calculations with the Penman–Monteith equation were quantified under different climate conditions of Brazil, Germany and Israel using maize as a common crop type. All experiments were carried out under non-limiting growing conditions. Canopy resistance was determined by scaling to canopy level specific relations between in situ measurements of incident radiation and stomatal conductance using a light penetration model. The model was tested against heat-pulse measured sap flow in plant stems. The root mean square error (RMSE) of daily calculated transpiration minus measured sap flow was 0.4 mm/day. It was dominated by its variance component (variance = 0.2 {mm/day} 2; bias = 0.0 mm/day). Calculated transpiration closely matched the measured trends at the three locations. No significant differences were found between seasons and locations. Uncertainties of canopy conductance parameterizations led to errors of up to 2.1 mm/day. The model responded most sensitively to a 30% change of net radiation (absolute bias error = 1.6 mm/day), followed by corresponding alterations of canopy resistances (0.8 mm/day), vapour pressure deficits (0.5 mm/day) and aerodynamic resistances (0.34 mm/day). Measured and calculated 30-min or hourly averaged transpiration rates are highly correlated ( r 2 = 0.95; n = 10634), and the slope of the regression line is close to unity. The overall RMSE of calculated transpiration minus measured sap flow was 0.08 mm/h and was dominated by its variance component (0.005 {mm/h} 2). Measured sap flow consistently lagged behind calculated transpiration, because plant hydraulic capacitance delays the change of leaf water potential that drives water uptake. Calculated transpiration significantly overestimated sap flow during morning hours (mean = 0.068 mm/h, n = 321) and underestimated it during afternoon hours (mean = −0.065 mm/h; n = 316). The Penman–Monteith approach as implemented in the present study is sufficiently sensitive to detect small differences between transpiration and water uptake and provides a robust tool to manage plant water supply under unstressed conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.