Abstract

The growing awareness of the health advantages offered by forests has underscored the significance of forest exposure as an upstream preventive measure against disease. While numerous studies have confirmed the physical and mental health benefits associated with forests, there is still a lack of quantitative understanding regarding the relationship between forest exposure and physiological health benefits (PHB). Particularly, there is insufficient knowledge about the threshold effects derived from short-term forest exposure. In this study, we propose a PHB threshold model for assessing forest exposure that introduces the concepts of efficiency threshold and benefits threshold. A pilot study was conducted in three typical natural forest sites to validate the proposed model. Electroencephalogram (EEG) was continuously measured as the physiological indicator, while meteorological, environmental, and demographic factors were simultaneously collected. The results show that: (1) the proposed PHB threshold model is applicable in a natural forest environment; (2) despite the longer time required to reach the PHB thresholds, forest exposure yielded more significant and prolonged health benefits compared to urban green spaces; (3) meteorological factors, such as temperature and relative humidity, play a crucial role in impacting the PHB threshold model; and (4) exposure to forests is better for deep thinking and relaxation than urban green spaces. These findings emphasize the potential of forests to offer a respite from the stresses of modern life and promote holistic well-being.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call