Abstract
Predicting the fate of organic compounds in the environment is challenging due to the inability of laboratory studies to replicate field conditions. We used the intentionally applied aquatic herbicide florpyrauxifen-benzyl (FPB) as a model compound to investigate the contribution of multiple transformation pathways to organic compound fate in lakes. FPB persisted in five Wisconsin lakes for 5-7 days with an in-lake half-life of <2 days. FPB formed four transformation products, with the bioactive product florpyrauxifen persisting up to 30 days post-treatment. Parallel laboratory experiments showed that FPB degrades to florpyrauxifen via base-promoted hydrolysis. Hydroxy-FPB and hydroxy-florpyrauxifen were identified as biodegradation products, while dechloro-FPB was identified as a photoproduct. Material balance calculations using both laboratory rates and field product concentrations demonstrated that hydrolysis (∼47% of loss), biodegradation (∼20%), sorption (∼13%), and photodegradation (∼4%) occurred on similar timescales. Furthermore, the combined results demonstrated that abiotic and plant-catalyzed hydrolysis of FPB to florpyrauxifen, followed by biodegradation of florpyrauxifen to hydroxy-florpyrauxifen, was the dominant transformation pathway in lakes. This study demonstrates how combined field and laboratory studies can be used to elucidate the role of simultaneous and interacting pathways in the fate of organic compounds in aquatic environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.