Abstract
Global urban growth leads to a great increase in the impervious surface area (ISA) such as roads, plazas, airports, and parking lots, and consequently reshapes hydrological regimes in urban basins. Beijing, the capital of China, has experienced rapid urban growth since the 1980s. However, the spatial-temporal variability of the ISA and its impact on flooding risk are unclear. This study monitored urban growth (i.e., the evolution of the ISA) in Beijing for the period of 1980–2015 based on Landsat data, and identified the response of surface runoff yield using a land-surface hydrological model. The modeling at a relatively high spatial resolution (~6 km) was driven with retrieved long-term ISA dynamics, Global LAnd Surface Satellite (GLASS) product, and climate forcings. The results show that the impervious surface fraction (ISF) in Beijing increased from 8.73% (1448.16 km2) in 1980 to 22.22% (3685.92 km2) in 2015. With a demarcation at around the year 2000, the ISA growth presents a new pattern with a northeast-southwest direction from the Core Functional Zone (Core-Zone). Due to the ISA expansion, the simulated runoff coefficient in 2010 is approximately doubled compared to that of 1980. We identified an ISF threshold of approximately 6%, beyond which every 1% increase in the ISF may increase the surface runoff by approximately 5.51 mm/year, and thereby poses a high potential flooding risk even under a moderate rainfall event. In four typical historical storms, the sensitivity coefficients of surface runoff to precipitation and ISF were 0.97 and 0.63, respectively, indicating impervious surfaces dramatically enhanced the potential flooding risk. Our findings have implications for urban planning and the construction of sponge city in Beijing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.