Abstract

Thickness quantification of conductive ferromagnetic materials by means of non-destructive evaluation (NDE) is a crucial component of structural health monitoring of infrastructure, especially for assessing the condition of large diameter conductive ferromagnetic pipes found in the energy, water, oil, and gas sectors. Pulsed eddy current (PEC) sensing, especially detector coil-based PEC sensor architecture, has established itself over the years as an effective means for serving this purpose. Approaches for designing PEC sensors as well as processing signals have been presented in previous works. In recent years, the use of the decay rate of the detector coil-based time domain PEC signal for the purpose of thickness quantification has been studied. Such works have established that the decay rate-based method holds generality to the detector coil-based sensor architecture, with a degree of immunity to factors such as sensor shape and size, number of coil turns, and excitation current. Moreover, this method has shown its effectiveness in NDE of large pipes made of grey cast iron. Following such literature, the focus of this work is explicitly PEC sensor detector coil voltage decay rate-based conductive ferromagnetic material thickness quantification. However, the challenge faced by this method is the difficulty of calibration, especially when it comes to applications such as in situ pipe condition assessment since measuring electrical and magnetic properties of certain pipe materials or obtaining calibration samples is difficult in practice. Motivated by that challenge, in contrast to estimating actual thickness as done by some previous works, this work presents a protocol for using the decay rate-based method to quantify relative thickness (i.e., thickness of a particular location with respect to a maximum thickness), without the requirement for calibration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.