Abstract
We present a novel analysis tool for time delay estimation in electrocardiographic signal processing. This tool enhances PR interval estimation (index of the atrioventricular conduction time) by limiting the distortion effect of the T wave overlapping the P wave at high heart rates. Our approach consists of modeling the T wave, cancelling its influence, and finally estimating the PR intervals during exercise and recovery with the proposed generalized Woody method. Different models of the T wave are presented and compared in a statistical summary that quantitatively justifies the improvements introduced by this study. Among the different models tested, we found that a piecewise linear function significantly reduces the T wave-induced bias in the estimation process. Combining this modeling with the proposed time delay estimation method leads to accurate PR interval estimation. Using this method on real ECGs recorded during exercise and its recovery, we found: 1) that the slopes of PR interval series in the early recovery phase are dependent on the subjects' training status (average of the slopes for sedentary men = 0.11 ms/s, and for athlete men = 0.28 ms/s), and 2) an hysteresis phenomenon exists in the relation PR/RR intervals when data from exercise and recovery are compared.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.