Abstract

This study investigates theoretical signal control algorithms based solely on probe vehicle data. Through development of a simulation system that can model urban signalised junction control using localisation probe data from all vehicles in the local area, improvements in junction operational efficiency that result from the improved input data are demonstrated for both isolated and coordinated junctions. Results from the isolated junction scenario show that the richness of the information contained within probe vehicle data means that control algorithms based just on positions and velocities of vehicles can produce 25% reductions in average delay compared to the current standard control algorithm MOVA. Results from the twin junction scenario confirm the importance of using high-level synchronisation to coordinate closely connected junctions, achieving reductions in average delays (compared to independent control approaches) of up to 40% through a process of weighting the probe vehicle data to reflect prior stage decisions of other parts of the junction. Critical to achieving these benefits, however, is the availability of high localisation accuracy probe data, with results indicating that the levels of accuracy necessary are representative of the typical performance of current in-vehicle global positioning system units, except when those vehicles are operating in urban canyon environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call