Abstract

Probe vehicle data are increasingly becoming more attractive for real-time system state estimation in transportation networks. This paper presents analytical models for the real-time estimation of queue lengths at traffic signals using the fundamental information (i.e., location and time) that probe vehicles provide. For a single queue with Poisson arrivals, analytical models are developed to evaluate how error changes in queue length estimation as the percentage of probe vehicles in the traffic stream varies. When the overflow queue is ignored, a closed-form solution is obtained for the variance of the estimation error. For the more general case with the overflow queue, a formulation for the error variance is presented, which requires the marginal probability distribution of the overflow queue as the input. In addition, an approximate model is presented for the latter case, which yields results that are comparable with the exact solution. Overall, the formulations presented here can be used to assess the error in queue length estimation from probe data without conducting simulation runs for various scenarios of probe vehicle market-penetration rates and congestion levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.