Abstract

The effects of formalin fixation on bone material properties remain debatable. In this study, we collected 36 fresh-frozen cuboid-shaped cortical specimens from five male bovine femurs and immersed half of the specimens into 4% formalin fixation liquid for 30 days. We then conducted three-point bending tests and used both beam theory method and an optimization method combined with specimen-specific finite element (FE) models to identify material parameters. Through the optimization FE method, the formalin-fixed bones showed a significantly lower Young's modulus (-12%) compared to the fresh-frozen specimens, while no difference was observed using the beam theory method. Meanwhile, both the optimization FE and beam theory methods revealed higher effective failure strains for formalin-fixed bones compared to fresh-frozen ones (52% higher through the optimization FE method and 84% higher through the beam theory method). Hence, we conclude that the formalin fixation has a significant effect on bovine cortical bones at small, elastic, as well as large, plastic deformations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.