Abstract
Background and purpose In the development of new strategies for fracture fixation, new methods have to be tested biomechanically under in vitro conditions before clinical trials can be performed. The gold standard for laboratory evaluations is fresh-frozen specimen. As the availability of fresh-frozen specimens is limited and since their use bears infectious risks, specimens treated with various chemical embalming fluids are also used. These preservation methods may alter the mechanical properties of the specimens used. Therefore, the aims of the present study were to determine the effects of three different preservation methods (formalin fixation (FO), Thiel-fixation (TH), and alcohol–glycerine fixation (AG)) on the elastic and postyield mechanical properties of cortical bone and to compare these properties to those of fresh-frozen (FF) specimens. Materials and methods Cylindrical cortical specimens (diameter 3 mm, length 60 mm) were obtained from human femurs ( n = 48) and bovine tibiae ( n = 40). Before specimen immersion in different fixation fluids, bone mineral density (BMD) as well as the initial Young's modulus was determined. The Young's modulus was determined in a nondestructive bending test, and measurements were repeated after 6 months of immersion in fixative solution. Subsequent to the nondestructive test, a destructive 3-point bending test was conducted to assess the postyield and fracture properties. Results The BMD as well as the initial Young's modulus showed no significant differences between the four test groups. After 6 months in fixative solution, the Young's modulus was significantly lowered in human Thiel specimens and only showed minor changes in formalin- and alcohol–glycerine-treated specimens. The plastic energy absorption of human and bovine specimens was altered significantly. Formalin as well as alcohol–glycerine fixation yielded a significant decrease in plastic energy absorption, whereas Thiel fixation significantly increased the plastic energy absorption. Discussion/conclusion Because of the significantly altered plastic mechanical properties of cortical bone, the use fresh-frozen bone specimens is recommended in biomechanical studies investigating failure loads of orthopaedic implants. The use of embalmed specimens should be restricted to pilot tests.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.