Abstract

Coronal mass ejections (CMEs) interact with large-scale solar wind structures and other CMEs during their propagation in the heliosphere and undergo erosion, deflection, and deformation. In this work, we aim to quantify the erosion of the CMEs in different solar wind backgrounds using 3D MHD simulations. The EUropean Heliosphere FORecasting Information Asset (EUHFORIA; Pomoell and Poedts, 2018) is employed to create a relaxed solar wind background and evolve a CME on top of it between 0.1 au and 2 au. The LFF spheromak model is used to model the CME. Initially, we assume a simple dipolar background wind mimicking a solar minimum condition. CMEs with different geometric and magnetic field parameters (geometrical size, chirality, polarity, and magnetic flux) are evolved, and the evolution of the CME mass and the magnetic flux contained in the magnetic cloud is tracked to quantify mass and flux erosion. We also quantify the deformation of the CME during its evolution by parameterizing the separatrix surface of the magnetic cloud. The same experiment is repeated in the presence of a stream interaction region (SIR) interacting with the CME. We characterise the deformation of the different sides of the CME (with and without the interaction with SIR). In addition, we explore the adaptive mesh refinement and stretched grid features of the upgraded EUHFORIA heliospheric wind model, i.e., the newly developed ICARUS model (Verbeke et al., 2022) to resolve the CME shock and magnetic cloud and find the conditions to improve the modelling of the sheath region. Although the analysis of CME erosion has been carried out in 2.5D (axisymmetric) in previous works (Hosteaux et al., 2021), we explore the differences in 3D, which is required to fully quantify the erosion and deformation, and investigate their effect on the CME arrival time and geo-effectiveness at Earth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call