Abstract

The injection of geothermal water into subsurface rock formations often induces a cascade of seismic events. However, a comprehensive understanding of the resulting temporal and spatial seismic density evolution remains elusive. In this study, we meticulously analyze both spatial and temporal earthquake probability density distributions. Leveraging data from multiple injection sequences obtained from the EPOS TCS-AH through the EPISODES Platform, our objective is to elucidate the spatiotemporal evolution of seismic activity across distinct phases of water injection. We extend our focus to quantify seismicity during the post-injection phase and assess whether the largest magnitude event in each sequence aligns with the derived distribution. This time, our primary emphasis is on conducting the above-mentioned analysis on the 09/1993 Soultz-sous-Fôret sequence. Our research is supported by Horizon Europe under grant agreement No. 101058129 as part of the DT-Geo Project. Our findings reveal a distinctive characteristic of seismic spatial density, marked by a sudden decay at extended distances. Remarkably, there is no significant divergence in spatial density decay observed before and after the cessation of injection. Furthermore, we observe that the occurrence of the maximum magnitude event coincides with the peak of the probability spatial density. Shifting to temporal density, we identify a close correlation with the increase in injection volume, displaying a skewed normal distribution. Notably, the maximum magnitude event aligns with the peak of the probability temporal density. In essence, our research substantively contributes to a quantitative comprehension of the dynamic features governing the temporal and spatial evolution of seismic density during intensified water injection scenarios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call