Abstract

Precise measurement of the temperature right at the surface of thermoplasmonic nanostructures is a grand challenge but extremely important for the photochemical reaction and photothermal therapy. We present here a method capable of measuring the surface temperature of plasmonic nanostructures with surface-enhanced Raman spectroscopy, which is not achievable by existing methods. We observe a sensitive shift of stretching vibration ofa phenyl isocyanide molecule with temperature (0.232 cm-1/°C) as a result of the temperature-dependent molecular orientation change. We develop this phenomenon into a method capable of measuring the surface temperature of Au nanoparticles (NPs) during plasmonic excitation, which is validated by monitoring the laser-induced desorption process of the adsorbed CO on Au NP surface. We further extend the method into a more demanding single living cell thermometry that requires a high spatial resolution, which allows us to successfully monitor the extracellular temperature distribution of a single living cell experiencing cold resistance and the intracellular temperature change during the calcium ion transport process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.