Abstract
ABSTRACTWe demonstrate a dual-mode sensing platform based on porous silicon (PSi) substrates coated with colloidal gold (Au) nanoparticles (NPs). This Au-PSi composite structure supports both molecular fingerprinting via surface enhanced Raman scattering (SERS) and quantification of molecular binding via reflectance measurements. Reflectance shifts of 7-10 nm in the infrared region were observed in the case of adsorbing benzenethiol or antioxidant glutathione molecules on the surface of Au NPs. Subsequent SERS measurements showed unique identification for both molecules and provided a < 1 μM and < 1 mM detection resolution for benzenethiol and glutathione, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.