Abstract

Anthropogenic NO[Formula: see text] concentrations cause climate change and human health issues. Previous studies have focused on the contribution of traffic factors to NO[Formula: see text] emissions but have ignored the spatially varying impact of public transport supply and demand on high-resolution NO[Formula: see text] concentrations. This study first applies a two-stage interpolation model to generate a high-resolution urban NO[Formula: see text] concentration map originating from satellite measurement products. Then, we formulate 12 explanatory indicators derived from a fusion of massive big geo-data including smart card data and point of interest information, to represent the specific degree of public transport supply and citizens' demand. Furthermore, a geographically weighted regression is applied to quantify the spatial variation in the effect of these indicators on the urban NO[Formula: see text] concentrations. The result shows that public transportation coverage, frequency, and capabilities as public transport supply indicators in metropolitan and suburban areas have a two-way influence on the NO[Formula: see text] emissions. However, among public transport demand indicators, the economic level has a significant positive impact in most areas. Our findings can provide policy implications for public transportation system optimization and air quality improvement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call