Abstract
Changing patterns of human aggregation are thought to drive annual and multiannual outbreaks of infectious diseases, but the paucity of data about travel behavior and population flux over time has made this idea difficult to test quantitatively. Current measures of human mobility, especially in low-income settings, are often static, relying on approximate travel times, road networks, or cross-sectional surveys. Mobile phone data provide a unique source of information about human travel, but the power of these data to describe epidemiologically relevant changes in population density remains unclear. Here we quantify seasonal travel patterns using mobile phone data from nearly 15 million anonymous subscribers in Kenya. Using a rich data source of rubella incidence, we show that patterns of population travel (fluxes) inferred from mobile phone data are predictive of disease transmission and improve significantly on standard school term time and weather covariates. Further, combining seasonal and spatial data on travel from mobile phone data allows us to characterize seasonal fluctuations in risk across Kenya and produce dynamic importation risk maps for rubella. Mobile phone data therefore offer a valuable previously unidentified source of data for measuring key drivers of seasonal epidemics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.