Abstract
The optical cat state plays an essential role in quantum computation and quantum metrology. Here, we experimentally quantify quantum coherence of an optical cat state by means of relative entropy and the l 1 norm of coherence in a Fock basis based on the prepared optical cat state at the rubidium D1 line. By transmitting the optical cat state through a lossy channel, we also demonstrate the robustness of quantum coherence of the optical cat state in the presence of loss, which is different from the decoherence properties of fidelity and Wigner function negativity of the optical cat state. Our results confirm that quantum coherence of optical cat states is robust against loss and pave the way for the application of optical cat states.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have