Abstract

Personal exposure assessment is a challenging task that requires both measurements of the state of the environment as well as the individual's movements. In this paper, we show how location data collected by smartphone applications can be exploited to quantify the personal exposure of a large group of people to air pollution. A Bayesian approach that blends air quality monitoring data with individual location data is proposed to assess the individual exposure over time, under uncertainty ofboth the pollutant level and the individual location. A comparison with personal exposure obtained assuming fixed locations for the individuals is also provided. Location data collected by the Earthquake Network research project are employed to quantify the dynamic personal exposure to fine particulate matter of around 2500 people living in Santiago (Chile) over a 4-month period. For around 30% of individuals, the personal exposure based on people movements emerges significantly different over the static exposure. On the basis of this result and thanks to a simulation study, we claim thateven when the individual location is known with nonnegligible error, thishelps to better assess personal exposure to air pollution. The approach is flexible and can be adopted to quantify the personal exposure based on any location-aware smartphone application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.