Abstract

Protein folding is a central problem in biological physics. Energetic roughness is an important aspect that controls protein-folding stability and kinetics. The roughness is associated with conflicting interactions in the protein and is also known as frustration. Recent studies indicate that an addition of a small amount of energetic frustration may enhance folding speed for certain proteins. In this study, we have investigated the conditions under which frustration increases the folding rate. We used a Cα structure-based model to simulate a group of proteins. We found that the free-energy barrier at the transition state (ΔF) correlates with nonnative-contact variation (ΔA), and the simulated proteins are clustered according to their fold motifs. These findings are corroborated by the Clementi-Plotkin analytical model. As a consequence, the optimum frustration regime for protein folding can be predicted analytically.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.