Abstract
Understanding the mobility of nano-objects in the eukaryotic cell nucleus, at multiple length-scales, is essential for dissecting nuclear structure-function relationships both in space and in time. Here, we demonstrate, using single-molecule fluorescent correlation spectroscopies, that motion of inert probes (proteins, polymers, or nanoparticles) with diameters ranging from 2.6 to 150 nm is mostly unobstructed in a nucleus. Supported by the analysis of electron tomography images, these results advocate the ∼150 nm-wide interchromosomal channels filled with the aqueous diluted protein solution. The nucleus is percolated by these channels to allow various cargos to migrate freely at the nanoscale. We determined the volume of interchromosomal channels in the HeLa cell nucleus to 237 ± 61 fL, which constitutes 34% of the cell nucleus volume. The volume fraction of mobile proteins in channels equals 16% ± 4%, and the concentration is 1 mM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.