Abstract

ABSTRACT Mangrove forests provide vital ecosystem services. The increasing threats to mangrove forest extent and fragmentation can be monitored from space. Accurate spatially explicit quantification of key vegetation characteristics of mangroves, such as leaf area index (LAI), would further advance our monitoring efforts to assess ecosystem health and functioning. Here, we investigated the potential of radiative transfer models (RTM), combined with active learning (AL), to estimate LAI from Sentinel-2 spectral reflectance in the mangrove-dominated region of Ngoc Hien, Vietnam. We validated the retrieval of LAI estimates against in-situ measurements based on hemispherical photography and compared against red-edge NDVI and the Sentinel Application Platform (SNAP) biophysical processor. Our results highlight the performance of physics-based machine learning using Gaussian processes regression (GPR) in combination with AL for the estimation of mangrove LAI. Our AL-driven hybrid GPR model substantially outperformed SNAP (R2 = 0.77 and 0.44 respectively) as well as the red-edge NDVI approach. Comparing two canopy RTMs, the highest accuracy was achieved by PROSAIL (RMSE = 0.13 m2.m−2, NRMSE = 9.57%, MAE = 0.1 m2.m−2). The successful retrieval of mangrove LAI from Sentinel-2 can overcome extensive reliance on scarce in-situ measurements for training seen in other approaches and present a more scalable applicability by relying on the universal principles of physics in combination with uncertainty estimates. AL-based GPR models using RTM simulations allow us to adapt the genericity of RTMs to the peculiarities of distinct ecosystems such as mangrove forests with limited ancillary data. These findings bode potential for retrieving a wider range of vegetation variables to quantify large-scale mangrove ecosystem dynamics in space and time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.