Abstract

Leaf area index (LAI) is an important structural property of vegetation canopy and is also one of the basic quantities driving the algorithms used in regional and global biogeochemical, ecological and meteorological applications. LAI can be estimated from remotely sensed data through the vegetation indices (VI) and the inversion of a canopy radiative transfer (RT) model. In recent years, applications of the genetic algorithms (GA) to a variety of optimization problems in remote sensing have been successfully demonstrated. In this study, we estimated LAI by integrating a canopy RT model and the GA optimization technique. This method was used to retrieve LAI from field measured reflectance as well as from atmospherically corrected Landsat ETM+ data. Four different ETM+ band combinations were tested to evaluate their effectiveness. The impacts of using the number of the genes were also examined. The results were very promising compared with field measured LAI data, and the best results were obtained with three genes in which the R 2 is 0.776 and the root-mean-square error (RMSE) 1.064.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.