Abstract

The internal shape and alignment of accelerator discs is crucial for efficient collider operation at the future compact linear collider (CLIC). We applied a calibrated custom-made Fourier-domain short coherence interferometer to measure the height of 40 and 60 μm ultraprecisely turned steps (surface roughness Ra≤25 nm, flatness ≤2 μm) on an oxygen-free electronic copper disc. The step heights were quantified to be (39.6±2.6) μm and (59.0±2.3) μm. The uncertainties are quoted at 95% confidence level and include contributions from calibration, refractive index of air, cosine error, surface roughness, and thermal expansion in comparison to standard temperature of 20°C. The results were verified by measuring the same steps using a commercial white light interferometer Veeco—NT3300. Our instrument can ensure that the accelerator discs of the CLIC are aligned within the tolerance required for efficient collider operation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.