Abstract

Abstract We present spatially resolved mass outflow rate measurements ( ) for the narrow line region of Markarian 34, the nearest Compton-thick type 2 quasar (QSO2). Spectra obtained with the Hubble Space Telescope and at Apache Point Observatory reveal complex kinematics, with distinct signatures of outflow and rotation within 2 kpc of the nucleus. Using multi-component photoionization models, we find that the outflow contains a total ionized gas mass of M ≈ 1.6 × 106 M ⊙. Combining this with the kinematics yields a peak outflow rate of M ⊙ yr−1 at a distance of 470 pc from the nucleus, with a spatially integrated kinetic energy of E ≈ 1.4 × 1055 erg. These outflows are more energetic than those observed in Mrk 573 and NGC 4151, supporting a correlation between luminosity and outflow strength even though they have similar peak outflow rates. The mix of rotational and outflowing components suggests that spatially resolved observations are required to determine accurate outflow parameters in systems with complex kinematics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call