Abstract

We show how the entanglement contained in states of spins arranged on a lattice may be quantified with observables arising in scattering experiments. We focus on the partial differential cross-section obtained in neutron scattering from magnetic materials but our results are sufficiently general such that they may also be applied to, e.g., optical Bragg scattering from ultracold atoms in optical lattices or from ion chains. We discuss resonating valence bond states and ground and thermal states of experimentally relevant models--such as Heisenberg, Majumdar-Ghosh, and XY model--in different geometries and with different spin numbers. As a by-product, we find that for the one-dimensional XY model in a transverse field such measurements reveal factorization and the quantum phase transition at zero temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.