Abstract

In neutrino-nucleus interactions, the particles produced at the primary vertex may be different from the particles observed in the final state. This is due to the effect of final-state interactions (FSI) on the particles during their transport in the nuclear matter to reach the detector (final state) after their production at the primary vertex. In this report, the energy reconstruction is done for charged current quasielastic (CCQE) and charged current resonance (CCRES) scatterings on the event-by-event basis using the calorimetric method, and NuWro and GENIE simulation tools. In addition, the percentage of fake events in CCQE and CCRES interactions is presented. It is found that the percentage of fake events is more than 50% for both CCQE and CCRES processes for both the generators, if we apply the condition for the signal events that the particles observed in the final state should be the same as the particles produced at the primary vertex. Based on our definition of signal events, the reconstructed energy and number of fake events may change, and this influences the measurement of oscillation parameters in long-baseline experiments like DUNE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.