Abstract

The color is the primal property of the objects around us and is direct manifestation of light-matter interactions. The color information is used in many different fields of science, technology and industry to investigate material properties or for identification of concentrations of substances. Usually the color information is used as a global parameter in a macro scale. To quantitatively measure color information in micro scale one needs to use dedicated microscope spectrophotometers or specialized micro-reflectance setups. Here, the Colorimetric Microscopy (C-Microscopy) approach based on digital optical microscopy and a free software is presented. The C-Microscopy approach uses color calibrated image and colorimetric calculations to obtain physically meaningful quantities i.e., dominant wavelength and excitation purity maps at micro level scale. This allows for the discovery of the local color details of samples surfaces. Later, to fully characterize the optical properties, the hyperspectral reflectance data at micro scale (reflectance as a function of wavelength for a each point) are colorimetrically recovered. The C-Microscopy approach was successfully applied to various types of samples i.e., two metamorphic rocks unakite and lapis lazuli, which are mixtures of different minerals; and to the surface of gold 99.999 % pellet, which exhibits different types of surface features. The C-Microscopy approach could be used to quantify the local optical properties changes of various materials at microscale in an accessible way. The approach is freely available as a set of python jupyter notebooks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call