Abstract

AbstractThis paper presents a new empirical model, called the cumulative storm impact index (CSII), that quantifies the impact of coastal storms on sandy beaches. The new model utilizes user‐defined storm data to incorporate both individual storm magnitude and the cumulative effect of successive storms into an index, which is a proxy for beach erosion at a given time. Applying this model to long‐term water‐level data from a Virginia tide gauge showed that the greatest storm impact resulted not from the larger individual storms, such as the Ash Wednesday nor'easter of 1962, the “Perfect Storm” of 1991, or Hurricane Sandy of 2012, but rather from especially stormy winter seasons that occurred during the twenty‐first century. Additionally, the CSII model uncovered a trend—not detectable by single storm impact analyses—toward greater storm impacts, which began c. 1980 and continued to the present day. Finally, comparative analyses using wave power as a storm index shows CSII can capture decadal or seasonal scale storminess. We expect this model to have utility in many areas of the coastal sciences and engineering, including developing holistic response models, quantifying erosion potential at other locations, and managing coastal ecosystems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call