Abstract

AbstractThe University of Colorado Airborne Solar Occultation Flux (CU AirSOF) instrument conducted the first suborbital carbon monoxide (CO) mass flux measurements on the scale of large wildfires, showing that the destructive fires in northern California in October 2017 emitted 2,040 ± 316 tonnes CO hr−1. Pyrogenic estimates from seven satellite‐based emission inventories bracket the observed flux, but their range spans a factor of 83. The simulated air quality impacts in the form of ozone and fine particulate matter scale primarily with these uncertain emission amounts, and range from insignificant to very severe. This uncertainty in predicting emissions is reduced to a factor of ∼2 by the CU AirSOF flux measurements, with potential for future improvements. The uncertainty is primarily the result of uncertain vegetation types and sources of radiative power measurements, and to a lesser extent uncertain emission factors and fire diurnal cycles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call