Abstract

Soft tissue compartment vibrations are initiated at heel-strike in heel-toe running. The concept of muscle tuning suggests that the body tries to minimize these vibrations with a muscle adaptation that changes the mechanical properties of the soft tissue compartment. A muscle tuning adaptation can be quantified by determining the biodynamic response, of the soft tissue compartment for different experimental conditions. To determine the biodynamic response a measure of both the input signal and the soft tissue compartment vibrations are required. The input signal for the vibrations is the rapid deceleration of the leg after initial ground contact. The aim of this study was to evaluate three non-invasive methods to quantify the input signal for the triceps surae soft tissue vibrations. Data from a force platform, a shoe mounted accelerometer and a video analysis of a reflective skin marker were used to quantify leg deceleration. Both the shoe mounted accelerometer and skin marker method provided a satisfactory evaluation of the input signal and could be used to determine the biodynamic response of the soft tissue compartment. The impact portion of the ground reaction force is primarily due to the deceleration of the leg at landing. However, due to the influence of the effective body mass on the impact magnitude, the force plate data was not appropriate for quantifying a muscle tuning response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.