Abstract

Spatially resolved diffuse reflectance spectroscopy (SRDRS) is a non-invasive optical technique that helps in clinical diagnosis of various tissue microcirculation and skin pigmentation disorders based on collected backscattered light from multi-layered tissue. The extraction of the optical properties from the reflectance spectrum using analytical solutions is laborious. Model-based light tissue interaction studies help in quantifying the optical properties. This work presents the use of finite element models of light tissue interaction for this purpose. A bilayer model mimicking human skin was considered and the diffused reflectance spectra at multiple detector points were generated using finite element modelling for varying melanin concentration, epidermal thickness, blood volume fraction, oxygen saturation and scattering components. The reflectance value based on varying optical parameters from multiple detection points lead to the generation of a look-up table (LUT), which is further used for finding the tissue parameters that contribute to the spatially resolved reflectance values. The tissue parameters estimated after inverse modelling showed a high degree of agreement with the expected tissue parameters for a test dataset different from the training dataset.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.