Abstract

Movement patterns may be a factor for manipulating the lumbar load, although little information is yet available in the literature about the relationship between this variable and intervertebral disc pressure (IDP). A finite element model of the lumbar spine (49-year-old asymptomatic female) was used to simulate intervertebral movements (L2-L5) of 127 asymptomatic participants. The data from participants that at least completed a simulation of lumbar vertebral movement during the first 53% of a movement cycle (flexion phase) were used for further analyses. Then, for each vertebral angular motion curve with constant spatial peaks, different temporal patterns were simulated in two stages: (1) in lumbar pattern exchange (LPE), each vertebral angle was simulated by the corresponding vertebrae of other participants data; (2) in vertebral pattern exchange (VPE), vertebral angles were simulated by each other. The k-mean algorithm was used to cluster two groups of variables; peak and cumulative IDP, in both stages of simulations (i.e., LPE and VPE). In the second stage of the simulation (VPE), Kendall's tau was utilized to consider the relationship between different temporal patterns and IDPs for each individual lumbar level. Cluster analyses showed that the temporal movement pattern did not exhibit any effect on the peak IDP while the cumulative IDP changed significantly for some patterns. Earlier involvement in lumbar motion at any level led to higher IDP in the majority of simulations. There is therefore a possibility of manipulating lumbar IDP by changing the temporal pattern with the same ROM, in which optimal distribution of the loads among lumbar levels may be applied as preventive or treatment interventions. Evaluating load benefits, such as load, on biomechanically relevant lumbar levels, dynamically measured by quantitative fluoroscopy, may help inform interventional exercises.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.