Abstract
The mechanisms contributing to experimental quality factors of short wavelength ($\ensuremath{\lambda}=440--480$ nm) III-nitride on silicon one-dimensional photonic crystal cavities were quantified. Fluctuations in fundamental and first-order cavity mode wavelength and quality factor were compared over sets of nominally identical cavities. Unlike at $\ensuremath{\lambda}=1.5\phantom{\rule{0.28em}{0ex}}\ensuremath{\mu}\mathrm{m}$, experimental quality factors were not limited by fabrication disorder modeled as smooth, normally distributed hole size and position variations; after ruling out absorption losses, additional scattering losses were found to predominate at short wavelengths. Experimental quality factors were sensitive to conformal deposition of few nanometer thin films on the photonic crystal surface, suggesting that the additional scattering losses were linked to the surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.