Abstract

Photoluminescence blinking of ${\mathrm{Zn}}_{0.42}{\mathrm{Cd}}_{0.58}\mathrm{Se}$ colloidal quantum dots was investigated experimentally as a function of the excitation intensity and modeled via a Monte Carlo method. In order to test the current blinking model of electron tunneling to states external to the quantum dot, experiments were performed with quantum dots on (insulating) glass and (conducting) indium-tin-oxide substrates. Comparison of simulated and experimental data allows one to extract characteristic parameters of the blinking free of artifacts and shows that the blinking can be understood in terms of two independent processes. First, a process is active for switching between the on and off states and has a power-law probability distribution for the length of both on and off periods. Second, a single-rate transition from the on to the off state is evoked. The power-law blinking process is found to be insensitive to excitation intensity and the electronic states of the substrate and presents identical statistics for the two switching directions, pointing to an intrinsic symmetry. The single-rate on\ensuremath{\rightarrow}off transition can account for all experimentally observed photoinduced and environmental (substrate) effects. On glass, its behavior is well described by a one-photon process in agreement with earlier studies on insulators. In contrast, a different behavior is found on the conducting substrates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.