Abstract

We have quantified the optical signals of synaptically induced neural activities in an in vitro brain slice preparation in terms of electrophysiological signals. The qualification was done using electrophysiologically well known neural activities in the CA1 area of rat hippocampal slices stained with externally applied fluorescent voltage-sensitive dye (VSD; Di-4-ANEPPS). Together with a newly designed CCD-based digital high-speed camera system and epi-fluorescent optics, our improvements were made on a protocol for staining using a newly designed chamber system. These improvements enabled us to make stable and reliable recordings of optical signals and electrophysiological measurements without affecting the physiological status and to make a quantitative comparison between them. The time course and amplitude of the optical signal showed fair agreement with intracellular and extracellular recordings, and was stable over 2 h. The optical signal followed synaptically induced long-term potentiation (LTP) as monitored by the electrophysiological signals. A regional difference in the amount of LTP was found in optical signals and was confirmed in the electrophysiological signals. These results demonstrate the capabilities of our improved method as an alternative but more potent tool to measure the neuronal activities of brain slice in addition to electrophysiological method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.