Abstract

ObjectivesThe quantitative assessment of muscle stiffness or weakness is essential for medical care. Shear wave elastography is non-invasive ultrasound method and provides quantitative information on the elasticity of soft tissue. However, the universal velocity scale for quantification has not been developed. The aim of the study is to determine the shear wave velocities of abdominal muscle during anesthetic induction and to identify methods to cancel the effects of confounders for future development in the quantitative assessment of muscle tone using the universal scale.MethodsWe enrolled 75 adult patients undergoing elective surgery with ASA-PS I – III in the period between December 2018 and March 2021. We measured and calculated the shear wave velocity (SWV) before and after opioid administration (i.e., the baseline at rest and opioid-induced rigidity condition), and after muscle relaxant administration (i.e., zero reference condition). The SWV value was adjusted for the subcutaneous fat thickness by our proposed corrections. The SWVs after the adjustment were compared among the values in baseline, rigidity, and relaxation using one-way repeated-measures ANOVA and post hoc Tukey–Kramer test. A p-value of < 0.05 was considered to be statistically significant. UMIN Clinical Trials Registry identifier UMIN000034692, registered on October 30, 2018.ResultsThe SWVs in the baseline, opioid-induced rigidity, and muscle relaxation conditions after the adjustment were 2.08 ± 0.48, 2.41 ± 0.60, and 1.79 ± 0.30 m/s, respectively (p < 0.001 at all comparisons).ConclusionThe present study suggested that the SWV as reference was 1.79 m/s and that the SWVs at rest and opioid-induced rigidity were ~ 10% and ~ 30% increase from the reference, respectively. The SWV adjusted for the subcutaneous fat thickness may be scale points for the assessment of muscle tone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call