Abstract

Quantification of circulating microRNAs (miRNAs) or viral RNAs is of great significance because of their broad relevance to human health. Currently, quantitative reverse transcription polymerase chain reaction (qRT-PCR), as well as microarray and gene sequencing, are considered mainstream techniques for miRNA identification and quantitation and the gold standard for SARS-CoV2 detection in the COVID-19 pandemic. However, these laboratory techniques are challenged by the low levels and wide dynamic range (from aM to nM) of miRNAs in a physiological sample, as well as the difficulty in the implementation in point-of-care settings. Here, we describe a one-step label-free electrochemical sensing technique by assembling self-folded multi-stem DNA-redox probe structure on gold microelectrodes and introducing a reductant, tris(2-carboxyethyl) phosphine hydrochloride (TCEP), in the detection buffer solution to achieve ultrasensitive detection with a detection limit of 0.1 fM that can be further improved if needed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call