Abstract

Fluorine-18 fluoroethylflumazenil ([18F]FEF) is a tracer for central benzodiazepine (BZ) receptors which is proposed as an alternative to carbon-11 flumazenil for in vivo imaging using positron emission tomography (PET) in humans. In this study, [18F]FEF kinetic data were acquired using a 60-min two-injection protocol on three normal subjects and two patients suffering from mesiotemporal epilepsy as demonstrated by abnormal magnetic resonance imaging and [18F]fluorodeoxyglucose positron emission tomography. First, a tracer bolus injection was performed and [18F]FEF rapidly distributed in the brain according to the known BZ receptor distribution. Thirty minutes later a displacement injection of 0.01 mg/kg of unlabelled flumazenil was performed. Activity was rapidly displaced from all BZ receptor regions demonstrating the specific binding of [18F]FEF. No displacement was observed in the pons. Plasma input function was obtained from arterial blood sampling, and metabolite analysis was performed by high-performance liquid chromatography. Metabolite quantification revealed a fast decrease in tracer plasma concentration, such that at 5 min post injection about 70% of the total radioactivity in plasma corresponded to [18F]FEF, reaching 24% at 30 min post injection. The interactions between [18F]FEF and BZ receptors were described using linear compartmental models with plasma input and reference tissue approaches. Binding potential values were in agreement with the known distribution of BZ receptors in human brain. Finally, in two patients with mesiotemporal sclerosis, reduced uptake of [18F]FEF was clearly observed in the implicated left hippocampus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.