Abstract

Numerous studies have demonstrated a decrease in glucose-6-phosphate dehydrogenase (G6PD) activity during aging in many cell types, including red blood cells, fibroblasts and lens cells. Moreover, the intracellular activity of G6PD has been shown to be regulated by binding to cell organelles. To investigate whether binding of G6PD to cell organelles is related with the decrease in its activity during aging, distribution patterns of G6PD activity and protein were assessed in small (SI) and large (LI) intestine of 3-month-old and 28-month-old rats. Enzyme activity, as measured spectrophotometrically, did not show any significant change with aging in SI or LI. Enzyme histochemistry, performed by subtracting activity staining of 6-phosphogluconate dehydrogenase (6PGD) from that of G6PD, showed a lower net G6PD activity in SI and LI epithelium of old rats in comparison with young rats. G6PD activity did not change significantly with aging in the muscularis externa of SI and LI. Immunoelectron microscopic analysis of G6PD protein allowed us to measure the density of G6PD molecules in cellular compartments, and the fraction of enzyme bound to cell organelles. In SI and LI epithelia, density of G6PD molecules was higher in old rats than in young rats; however, the fraction of enzyme bound to cell organelles also increased with aging. These data suggest that G6PD activity in epithelium of SI and LI decreases with aging due to the accumulation of significant amounts of enzyme bound to cell organelles, a condition which makes it less active than the soluble enzyme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call