Abstract

BackgroundIn vitro culture of fibroblasts is a technique based on cell isolation, physiological characterization, and cryopreservation. This technique has not been described for Galea spixii, therefore, it can be used to learn about its cellular biology and genetic diversity. ObjectiveWe established fibroblast lines of six G. spixii individuals from several passages (second, fifth, eighth, and tenth) and cryopreserved them. MethodsFibroblasts recovered from skin biopsies were identified based on morphology, immunocytochemistry, and karyotyping. The cells were analyzed for morphology, ultrastructure, viability, proliferation, metabolism, oxidative stress, bioenergetic potential, and apoptosis before and after cryopreservation. ResultsAfter the eighth passage, the fibroblasts showed morphological and karyotypic changes, although their viability, metabolism, and proliferation did not change. An increase in oxidative stress and bioenergetic potential from the fifth to the eighth passages were also observed. Post cryopreservation, cell damage with respect to the ultrastructure, viability, proliferative rate, apoptotic levels, oxidative stress, and bioenergetic potential were verified. ConclusionFibroblasts up to the tenth passage could be cultured in vitro. However, cells at the fifth passage were of better quality to be used for reproductive techniques. Additionally, optimization of the cryopreservation protocol is essential to improve the physiological parameters of these cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call