Abstract

BackgroundFibronectin 1 (FN1), a glycoprotein component of the extracellular matrix, exerts different functions during reproductive processes such as fertilisation, gastrulation and implantation. FN1 expression has been described to increase significantly from the morula towards the early blastocyst stage, suggesting that FN1 may also be involved in early blastocyst formation. By alternative splicing at 3 defined regions, different FN1 isoforms are generated, each with a unique biological function. The analysis of the alternative FN1 splicing on the one hand and the search for candidate FN1 receptors on the other hand during early bovine embryo development may reveal more about its function during bovine preimplantation embryo development.ResultsRT-qPCR quantification of the FN1 splice isoforms in oocytes, embryos, cumulus cells and adult tissue samples revealed a large variation in overall FN1 expression and in splice variant expression. Moreover, two new FN1 transcript variants were identified, the first one expressed in bovine preimplantation embryos and the second one expressed in cumulus cells.In the search for candidate receptors for the new embryo specific FN1 isoform, RNA expression analysis identified 5 α integrin subunits (ITGA2B, ITGA3, ITGA5, ITGA8, ITGAV) and 2 β integrin subunits (ITGB1 and ITGB3) with a similar or overlapping RNA expression pattern as compared to FN1. But double immunofluorescent stainings could not confirm complete co-localisation between FN1 and one out of 3 selected integrins alpha subunits (ITGA3, ITGA5, ITGAV).ConclusionThe existence of a new FN1 transcript variant, specifically expressed in morulae and blastocysts strengthens the idea that FN1 is involved in the process of compaction and blastocyst formation. Analysis of the integrin expression could not identify the binding partner for the embryo specific FN1 transcript variant making further steps necessary for the identification of the FN1 receptor and the downstream effects of FN1-receptor binding.

Highlights

  • Fibronectin 1 (FN1), a glycoprotein component of the extracellular matrix, exerts different functions during reproductive processes such as fertilisation, gastrulation and implantation

  • RT-qPCR quantification of the FN1 splice isoforms in oocytes, embryos, cumulus cells and adult tissue samples revealed a large variation in overall FN1 expression and in splice variant expression

  • The existence of a new FN1 transcript variant, expressed in morulae and blastocysts strengthens the idea that FN1 is involved in the process of compaction and blastocyst formation

Read more

Summary

Introduction

Fibronectin 1 (FN1), a glycoprotein component of the extracellular matrix, exerts different functions during reproductive processes such as fertilisation, gastrulation and implantation. Fibronectin 1 (FN1) is a large adhesive glycoprotein of the extracellular matrix composed of 2 nearly identical subunits with a variety of binding domains for cell surface and extracellular ligands. By means of these multiple interaction sites, FN1 is involved in a variety of biological processes. The functional complexity of FN1 is carried out through its protein diversity, which consists of multiple isoforms including plasma FN1 [9] and cellular FN1 filaments [10] Those FN1 isoforms are the products of a single gene, and are generated by alternative splicing at 3 sites (EIIIA, EIIIB and IIICS) of the mRNA precursor [11]. The EIIIA and EIIIB regions are absent in plasma FN1 and EIIIA/EIIIB containing FN1 is poorly expressed in normal adult tissue but overexpressed in developing embryos, wound healing and tumours [12,23]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call