Abstract

ObjectiveClinical trial outcomes often involve an ordinal scale of subjective functional assessments but the optimal way to quantify results is not clear. In stroke, the most commonly used scale, the modified Rankin Score (mRS), a range of scores (“Shift”) is proposed as superior to dichotomization because of greater information transfer. The influence of known uncertainties in mRS assessment has not been quantified. We hypothesized that errors caused by uncertainties could be quantified by applying information theory. Using Shannon’s model, we quantified errors of the “Shift” compared to dichotomized outcomes using published distributions of mRS uncertainties and applied this model to clinical trials.MethodsWe identified 35 randomized stroke trials that met inclusion criteria. Each trial’s mRS distribution was multiplied with the noise distribution from published mRS inter-rater variability to generate an error percentage for “shift” and dichotomized cut-points. For the SAINT I neuroprotectant trial, considered positive by “shift” mRS while the larger follow-up SAINT II trial was negative, we recalculated sample size required if classification uncertainty was taken into account.ResultsConsidering the full mRS range, error rate was 26.1%±5.31 (Mean±SD). Error rates were lower for all dichotomizations tested using cut-points (e.g. mRS 1; 6.8%±2.89; overall p<0.001). Taking errors into account, SAINT I would have required 24% more subjects than were randomized.ConclusionWe show when uncertainty in assessments is considered, the lowest error rates are with dichotomization. While using the full range of mRS is conceptually appealing, a gain of information is counter-balanced by a decrease in reliability. The resultant errors need to be considered since sample size may otherwise be underestimated. In principle, we have outlined an approach to error estimation for any condition in which there are uncertainties in outcome assessment. We provide the user with programs to calculate and incorporate errors into sample size estimation.

Highlights

  • In the analysis of new therapeutic approaches to disease, it is essential that the effects of treatment be captured in a reliable manner

  • While using the full range of modified Rankin Score (mRS) is conceptually appealing, a gain of information is counter-balanced by a decrease in reliability

  • We provide the user with programs to calculate and incorporate errors into sample size estimation

Read more

Summary

Introduction

In the analysis of new therapeutic approaches to disease, it is essential that the effects of treatment be captured in a reliable manner. Measures for many conditions include scales that involve subjective assessment of a subject’s well-being comparing two different treatments. In the case of stroke, the modified Rankin Score (mRS) is the most widely adopted measure of recovery of function in stroke trials [1]. Dichotomization of outcome scales including dichotomization of mRS at cut-point of 1 (e.g, mRS 0–1 vs 2–6) was used successfully in the NINDS trial of intravenous alteplase for ischemic stroke [2]. More recently dichotomization at higher cut-points of mRS 3 and 4 have been employed in three randomized stroke trials of hemicraniectomy (DECIMAL, DESTINY, and HAMLET), which had patients with high baseline stroke severity, all of which were positive with relatively low number of subjects [3,4,5]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call