Abstract

PurposeWhile computed tomography (CT) is frequently used to quantify epicardial adipose tissue (EAT), the effect of different acquisition parameters on EAT volume has not been systematically reported. We assessed the influence of low-voltage acquisition and contrast enhancement on EAT quantification. MethodTwo independent cohorts (100 and 127 patients) referred for routine coronary CT were included. One cohort received a low-voltage and a standard voltage non-contrast acquisition (120 and 100 kV), the other cohort underwent non-contrast and contrast-enhanced CT. EAT volume was quantified using a semi-automated analysis software. Whereas the lower EAT threshold was consistently set at -190 Hounsfield Units (HU), different upper thresholds for EAT were analyzed. Bland-Altman analysis was used to analyze the agreement of EAT volume between scans with different acquisition parameters. We referred to a non-enhanced 120 kV acquisition with an upper threshold of -30 HU. ResultsMean EAT volume was 159 ± 76 ml as measured in 120 kV non-contrast data sets with an upper threshold of -30 HU. For 100 kV data sets, an upper threshold of -40 HU showed the best correlation (r = 0.961, p < 0.05). Significant overestimation was found for upper thresholds of -20 and -30 HU and significant underestimation for -50 HU. In non-contrast vs. contrast-enhanced acquisitions, there was a significant underestimation of EAT volume for contrast-enhanced scans (mean difference 31 ml, 95% limits of agreement 27 to −89 ml). ConclusionsCT-based EAT volume quantification in low-voltage and contrast-enhanced images is feasible. However, adjustment of the upper threshold for detection of fat is mandatory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call