Abstract

This chapter describes a step-by-step protocol for rapid serological quantification of global DNA methylation by enzyme-linked immunosorbent assay (ELISA) in plant tissue culture specimens. As a case study model, we used the coconut palm (Cocos nucifera), from which plumules were subjected to somatic embryogenesis followed by embryogenic calli multiplication. DNA methylation is one of the most common epigenetic markers in the regulation of gene expression. DNA methylation is generally associated with non-expressed genes, that is, gene silencing under certain conditions, and the degree of DNA methylation can be used as a marker of various physiological processes, both in plants and in animal cells. Methylation consists of adding a methyl radical to carbon 5 of the DNA cytosine base. Herein, the global DNA methylation was quantified by ELISA with antibodies against methylated cytosines using a commercial kit (Zymo-Research™). The method allowed the detection of methylation in total DNA extracts from coconut palm embryogenic calli (arising from somatic embryogenesis) cultivated in liquid or solid media by using antibodies against methylated cytosines and enzymatic development with a colorimetric substrate. Control samplesof commercially provided Escherichia coli bacterial DNA with previously known methylation percentages were included in the ELISA testto construct an experimental methylation standard curve. The logarithmic regression of this E. coli standard curve allowed methylation quantification in coconut palm samples. The present ELISA methodology, applied to coconut palm tissue culture specimens, is promising for use in other plant species and botanical families. This chapter is presented in a suitable format for use as a step-by-step laboratory procedure manual, with theoretical introduction information, which makes it easy to apply the protocol in samples of any biological nature to evaluate DNA global methylation associated with any physiological process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call