Abstract

DNA methylation is a key epigenetic modification which, in mammals, occurs mainly at CpG dinucleotides. Most of the CpG methylation in the genome is found in repetitive regions, rich in dormant transposons and endogenous retroviruses. Global DNA hypomethylation, which is a common feature of several conditions such as ageing and cancer, can cause the undesirable activation of dormant repeat elements and lead to altered expression of associated genes. DNA hypomethylation can cause genomic instability and may contribute to mutations and chromosomal recombinations. Various approaches for quantification of global DNA methylation are widely used. Several of these approaches measure a surrogate for total genomic methyl cytosine and there is uncertainty about the comparability of these methods. Here we have applied 3 different approaches (luminometric methylation assay, pyrosequencing of the methylation status of the Alu repeat element and of the LINE1 repeat element) for estimating global DNA methylation in the same human cell and tissue samples and have compared these estimates with the “gold standard” of methyl cytosine quantification by HPLC. Next to HPLC, the LINE1 approach shows the smallest variation between samples, followed by Alu. Pearson correlations and Bland-Altman analyses confirmed that global DNA methylation estimates obtained via the LINE1 approach corresponded best with HPLC-based measurements. Although, we did not find compelling evidence that the gold standard measurement by HPLC could be substituted with confidence by any of the surrogate assays for detecting global DNA methylation investigated here, the LINE1 assay seems likely to be an acceptable surrogate in many cases.

Highlights

  • DNA methylation is a chemical modification of the genome which involves the covalent addition of a methyl group to DNA, mainly occurring at cytosine residues within CpG dinucleotides

  • Estimates of global DNA methylation obtained with high performance LC (HPLC), LINE1 and Alu were lower in colorectal tumor tissue than in paired normal tissue, whereas there was no detectable difference between tissue types when assayed by the luminometric methylation assay (LUMA) method (Table 4 and Figure 2)

  • Our present study extends consideration of this issue to human tissues, uses the fast, easy but reliable, reproducible and more quantitative pyrosequencing approach instead of the MethyLight approach [34], and includes the use of the gold standard HPLC assay for global DNA methylation

Read more

Summary

Introduction

DNA methylation is a chemical modification of the genome which involves the covalent addition of a methyl group to DNA, mainly occurring at cytosine residues within CpG dinucleotides. Transposable elements, which include long terminal repeats (LTR)-retrotransposons, long and short interspersed nuclear elements (LINE and SINE, respectively) and DNA transposons constitute about 45% of the human genome. These sequences could interfere with the regulation of gene expression and genome structure by means of insertions, deletions, inversions and translocations of genomic sequences. This potential damage is decreased by high levels of CpG methylation which effectively silences these repetitive regions [3,4]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call