Abstract
BackgroundParameters of myocardial deformation have been suggested to be superior to conventional measures of ventricular function in patients with tetralogy of Fallot (ToF), but have required non-routine, tagged cardiovascular magnetic resonance (CMR) techniques. We assessed biventricular myocardial function using CMR cine-based feature tracking (FT) and compared it to speckle tracking echocardiography (STE) and to simple endocardial border delineation (EBD). In addition, the relation between parameters of myocardial deformation and clinical parameters was assessed.MethodsOverall, 28 consecutive adult patients with repaired ToF (age 40.4 ± 13.3 years) underwent standard steady-state-free precession sequence CMR, echocardiography, and cardiopulmonary exercise testing. In addition, 25 healthy subjects served as controls. Myocardial deformation was assessed by CMR based FT (TomTec Diogenes software), CMR based EBD (using custom written software) and STE (TomTec Cardiac Performance Analysis software).ResultsFeature tracking was feasible in all subjects. A close agreement was found between measures of global left (LV) and right ventricular (RV) global strain. Interobserver agreement for FT and STE was similar for longitudinal LV global strain, but FT showed better inter-observer reproducibility than STE for circumferential or radial LV and longitudinal RV global strain. Reproducibility of regional strain on FT was, however, poor. The relative systolic length change of the endocardial border measured by EBD yielded similar results to FT global strain. Clinically, biventricular longitudinal strain on FT was reduced compared to controls (P < 0.0001) and was related to the number of previous cardiac operations. In addition, FT derived RV strain was related to exercise capacity and VE/VCO2-slope.ConclusionsAlthough neither the inter-study reproducibility nor accuracy of FT software were investigated, and its inter-observer reproducibility for regional strain calculation was poor, its calculations of global systolic strain showed similar or better inter-oberver reproducibility than those by STE, and could be applied across RV image regions inaccessible to echo. ‘Global strain’ calculated by EBD gave similar results to FT. Measurements made using FT related to exercise tolerance in ToF patients suggesting that the approach could have clinical relevance and deserves further study.
Highlights
Parameters of myocardial deformation have been suggested to be superior to conventional measures of ventricular function in patients with tetralogy of Fallot (ToF), but have required non-routine, tagged cardiovascular magnetic resonance (CMR) techniques
CMR has a superior interstudy reproducibility of left ventricular (LV) volumes, ejection fraction and mass measurements compared to echocardiography, we have recently demonstrated that parameters of LV longitudinal function [15], as assessed by speckle tracking echocardiography are more sensitive compared to ejection fraction in detecting subtle LV systolic dysfunction and in predicting prognosis in this setting [16,17]
Feasibility of feature tracking CMR FT measurements could be performed for the LV and right ventricular (RV) in all ToF patients included in the study
Summary
Parameters of myocardial deformation have been suggested to be superior to conventional measures of ventricular function in patients with tetralogy of Fallot (ToF), but have required non-routine, tagged cardiovascular magnetic resonance (CMR) techniques. Due to the complicated geometry of the tripartite RV and limited acoustic windows in many patients, conventional echocardiography is not well suited for assessing RV volumes and RV function [6,7,8]. These measurements remain the domain of cardiac magnetic resonance imaging (CMR), offering the advantages of a wide field of view, lack of anatomic plane restriction, and superior reproducibility [9,10]. Assessing parameters of RV longitudinal function is theoretically appealing as anatomical studies have demonstrated that the deeper RV muscle fibres are predominantly arranged in a longitudinal fashion from the tricuspid valve annulus to the apex and RV stroke volume grossly depends on longitudinal shortening [18,19]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have