Abstract

BackgroundCardiovascular magnetic resonance (CMR) offers quantification of phasic atrial functions based on volumetric assessment and more recently, on CMR feature tracking (CMR-FT) quantitative strain and strain rate (SR) deformation imaging. Inter-study reproducibility is a key requirement for longitudinal studies but has not been defined for CMR-based quantification of left atrial (LA) and right atrial (RA) dynamics.MethodsLong-axis 2- and 4-chamber cine images were acquired at 9:00 (Exam A), 9:30 (Exam B) and 14:00 (Exam C) in 16 healthy volunteers. LA and RA reservoir, conduit and contractile booster pump functions were quantified by volumetric indexes as derived from fractional volume changes and by strain and SR as derived from CMR-FT. Exam A and B were compared to assess the inter-study reproducibility. Morning and afternoon scans were compared to address possible diurnal variation of atrial function.ResultsInter-study reproducibility was within acceptable limits for all LA and RA volumetric, strain and SR parameters. Inter-study reproducibility was better for volumetric indexes and strain than for SR parameters and better for LA than for RA dynamics. For the LA, reservoir function showed the best reproducibility (intraclass correlation coefficient (ICC) 0.94–0.97, coefficient of variation (CoV) 4.5–8.2 %), followed by conduit (ICC 0.78–0.97, CoV 8.2–18.5 %) and booster pump function (ICC 0.71–0.95, CoV 18.3–22.7). Similarly, for the RA, reproducibility was best for reservoir function (ICC 0.76–0.96, CoV 7.5–24.0 %) followed by conduit (ICC 0.67–0.91, CoV 13.9–35.9) and booster pump function (ICC 0.73–0.90, CoV 19.4–32.3). Atrial dynamics were not measurably affected by diurnal variation between morning and afternoon scans.ConclusionsInter-study reproducibility for CMR-based derivation of LA and RA functions is acceptable using either volumetric, strain or SR parameters with LA function showing higher reproducibility than RA function assessment. Amongst the different functional components, reservoir function is most reproducibly assessed by either technique followed by conduit and booster pump function, which needs to be considered in future longitudinal research studies.

Highlights

  • Cardiovascular magnetic resonance (CMR) offers quantification of phasic atrial functions based on volumetric assessment and more recently, on CMR feature tracking (CMR-FT) quantitative strain and strain rate (SR) deformation imaging

  • In total 16 cases were compared to assess the interstudy reproducibility for left atrial (LA) and right atrial (RA) volumetric and CMR-FT derived function (Exam A vs. Exam B). cases (LA volumetric analysis, LA and RA CMR-FT) and cases (RA volumetric analysis) were compared for the assessment of diurnal variation (Exam A/B vs. Exam C. In one measurement (Exam C)), respectively. 94. and 87.7 % of all segments could be included in LA and RA CMR-FT analysis, respectively

  • Inter-study reproducibility Inter-study reproducibility was within acceptable limits for all LA and RA volumetric, strain and SR parameters

Read more

Summary

Introduction

Cardiovascular magnetic resonance (CMR) offers quantification of phasic atrial functions based on volumetric assessment and more recently, on CMR feature tracking (CMR-FT) quantitative strain and strain rate (SR) deformation imaging. Impaired LA function detected with CMRFT accurately identifies patients with heart failure and preserved ejection fraction and hypertrophic cardiomyopathy [8], shows close correlation with LV fibrosis [9] and represents a powerful prognostic marker for the development of heart failure in the general population [10]. For the latter indication and serial longitudinal follow-up scans inter-study reproducibility is a key requirement. The aim of the present study was to investigate the interstudy reproducibility of CMR derived LA and right atrial (RA) function assessment as determined by phasic volumetric analysis as well as by CMR-FT derived atrial strain and SR

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call