Abstract
Reliable data transmission capacity is a crucial factor in supporting high-data-rate communication for smart cities by implementing the Internet of Things. Optical fiber has become the most favorable transmission media by taking advantage of optical signals. However, when optical signals propagate through optical fibers, disturbances occur as the transmission distance increases. These disturbances affect the system performance indicated by the deteriorating transmission data quality in terms of the quality factor (Q-factor) and bit error rate. These parameters are vulnerable to certain factors that can alter signal transmissions such as fiber attenuation, group velocity dispersion (GVD), and self-phase modulation (SPM) as a nonlinear effect. In this study, the effects of these factors on a single-channel, single-mode fiber are investigated using a bit rate of 10 Gbps at various transmission distances and source power levels. The parametric study of attenuation, GVD, and SPM with non-return-to-zero (NRZ) modulation format are considered at various transmission distances, from 10 to 100 km, and input powers of 5 and 10 dBm are simulated using OptiSystem to characterize the parameters of Q-factor and received power. The results indicate that the performance of the system deteriorates as the transmission distance increases, and the dominant effect that impacts the performance is GVD. This result is useful for designing effective and precise fiber optic transmission for high-data-rate transmission.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal on Advanced Science, Engineering and Information Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.