Abstract
Long-distance signal transmission, made possible with in-line optical amplifiers [1], suffers from nonlinear phenomena arising in optical fibers. A transmitted signal very near the zero- dispersion wavelength undergoes a remarkable noise increase due to four-wave mixing (FWM) between the signal and the amplified spontaneous emission (ASE) [2]. On the other hand, when the signal wavelength is further away from the zero-dispersion wavelength, the combined effect of self-phase modulation (SPM) and group-velocity dispersion (GVD) causes waveform distortion and limits the allowable transmission distance. Although compensation of GVD is effective in alleviating this limitation [3],[4], no quantitative discussion has been carried out. In this paper, GVD compensation in in-line amplifier systems is evaluated by numerically solving the nonlinear Shrodinger equation (NLSE). Improvement in transmission distance and the optimum amount of dispersion compensation are clarified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.